Advanced Algorithm

Jialin Zhang zhangjialin@ict.ac.cn
Institute of Computing Technology, Chinese Academy of Sciences

March 28, 2019

Lecture 3: Balls and Bins

Useful Inequalities

- Randomized Algorithm - Chapter 3.2 (P45)

Theorem (Union Bound)

Let E_{i} be a random event, then we have $\operatorname{Pr}\left[\cup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)$.

Theorem (Markov Inequality)

Let Y be a random variable assuming only non-negative values. Then for all $t>0, \operatorname{Pr}[Y \geq t] \leq \frac{E[Y]}{t}$.

Theorem (Chebyshev's Inequality)

Let X be a random variable with expectation μ_{X} and standard deviation σ_{X}, then for any $t>0$,

$$
\operatorname{Pr}\left[\left|X-\mu_{X}\right| \geq t \sigma_{X}\right] \leq \frac{1}{t^{2}}
$$

Useful Inequalities

- Randomized Algorithm - Chapter 4.1 (P67)

Theorem (Chernoff's Bound(1))

Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Poisson trials such that, for $1 \leq i \leq n, \operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Then, for $X=\sum_{i=1}^{n} X_{i}, \mu=E[X]=\sum_{i=1}^{n} p_{i}$, and any $\delta>0$,

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

Theorem (Chernoff's Bound(2))
\ldots and any $0<\delta<1$,

$$
\operatorname{Pr}[X<(1-\delta) \mu]<\left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}
$$

Useful Inequalities

- Randomized Algorithm - Chapter 4.1 (P67)

Theorem (Chernoff's Bound(3))

Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Poisson trials such that, for $1 \leq i \leq n, \operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, where $0<p_{i}<1$. Then, for $X=\sum_{i=1}^{n} X_{i}, \mu=E[X]=\sum_{i=1}^{n} p_{i}$, and any $0<\delta<1$,

$$
\operatorname{Pr}[|X-\mu|>\delta \mu]<2 e^{-\frac{\delta^{2}}{3} \mu}
$$

Balls and Bins

- m balls, n bins. You randomly throw each ball to some bin.
- X_{i} : number of balls in the i-th bin.
- Let $k \triangleq \max \left(X_{1}, X_{2}, \cdots, X_{n}\right)$.
- Question: expectation and distribution of k ?

Balls and Bins

(1) $m=o(\sqrt{n})$;

- prove $\operatorname{Pr}(k>1)=o(1)$.
(2) $m=\Theta(\sqrt{n})$; (Birthday Paradox)
- compute $\operatorname{Pr}(k>1)$ again.
(3) $m=n$;
- find suitable x, such that $\operatorname{Pr}(k \leq x)=1-o(1)$.
- $k=\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p;
(9) $m \geq n \ln n$ (next lecture);

Homework

(1) Prove Chernoff's Bound (2)(3).
(2) Prove $\left(\frac{m}{x}\right)^{x} \leq\binom{ m}{x} \leq\left(\frac{e m}{x}\right)^{x}$. Here x is an integer ranged from $[1 \cdots m]$. (Stirling's formula: $\left.n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)$
(3) In case 3 in balls and bins problem, let Y_{i} be the random event that there are more than $\frac{\ln n}{3 \ln \ln n}$ balls in the i-th bin. Prove $\forall i \neq j, \operatorname{Cor}\left(Y_{i}, Y_{j}\right)<0$.

