Advanced Algorithm

Jialin Zhang zhangjialin@ict.ac.cn

Institute of Computing Technology, Chinese Academy of Sciences

March 28, 2019

A D

Lecture 3: Balls and Bins

<ロ> <同> <同> < 同> < 同>

æ

Useful Inequalities

• Randomized Algorithm - Chapter 3.2 (P45)

Theorem (Union Bound)

Let E_i be a random event, then we have $Pr[\cup_{i=1}^{n} E_i] \leq \sum_{i=1}^{n} Pr(E_i).$

Theorem (Markov Inequality)

Let Y be a random variable assuming only non-negative values. Then for all t > 0, $Pr[Y \ge t] \le \frac{E[Y]}{t}$.

Theorem (Chebyshev's Inequality)

Let X be a random variable with expectation μ_X and standard deviation σ_X , then for any t > 0,

$$\Pr[|X - \mu_X| \ge t\sigma_X] \le \frac{1}{t^2}.$$

Useful Inequalities

• Randomized Algorithm - Chapter 4.1 (P67)

Theorem (Chernoff's Bound(1))

Let X_1, X_2, \dots, X_n be independent Poisson trials such that, for $1 \le i \le n$, $Pr[X_i = 1] = p_i$, where $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i, \mu = E[X] = \sum_{i=1}^n p_i$, and any $\delta > 0$,

$$\mathsf{Pr}[X>(1+\delta)\mu]< [rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}]^{\mu}.$$

Theorem (Chernoff's Bound(2))

 \cdots and any $0 < \delta < 1$,

$$\mathsf{Pr}[X < (1-\delta)\mu] < [rac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}]^{\mu}.$$

- 4 同 6 4 日 6 4 日 6

э

Useful Inequalities

• Randomized Algorithm - Chapter 4.1 (P67)

Theorem (Chernoff's Bound(3))

Let X_1, X_2, \dots, X_n be independent Poisson trials such that, for $1 \le i \le n$, $Pr[X_i = 1] = p_i$, where $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i, \mu = E[X] = \sum_{i=1}^n p_i$, and any $0 < \delta < 1$,

$$\Pr[|X-\mu| > \delta\mu] < 2e^{-\frac{\delta^2}{3}\mu}.$$

- *m* balls, *n* bins. You randomly throw each ball to some bin.
- X_i: number of balls in the *i*-th bin.
- Let $k \triangleq \max(X_1, X_2, \cdots, X_n)$.
- Question: expectation and distribution of k?

<ロ> <同> <同> < 同> < 同>

æ

- Prove Chernoff's Bound (2)(3).
- Prove $\left(\frac{m}{x}\right)^{\times} \leq {\binom{m}{x}} \leq {(\frac{em}{x})^{\times}}$. Here x is an integer ranged from $[1 \cdots m]$. (Stirling's formula: $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$)
- In case 3 in balls and bins problem, let Y_i be the random event that there are more than $\frac{\ln n}{3 \ln \ln n}$ balls in the *i*-th bin. Prove ∀i ≠ j, Cor(Y_i, Y_j) < 0.</p>